Improved antitumor activity of TRAIL fusion protein via formation of self-assembling nanoparticle
نویسندگان
چکیده
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has been known as a promising agent for cancer therapy due to its specific apoptosis-inducing effect on tumor cells rather than most normal cells. However, systemically delivered TRAIL suffers from a rapid clearance from the body with an extremely short half-life. Thermally responsive elastin-like polypeptides (ELPs) are a promising class of temperature sensitive biopolymers based on the structural motif found in mammalian tropoelastin and retain the advantages of polymeric drug delivery systems. We therefore expressed RGD-TRAIL fused with ELP (RGD-TRAIL-ELP) in E. coli. Purification of RGD-TRAIL-ELP was achieved by the conveniently inverse transition cycling (ITC). The purified RGD-TRAIL-ELP without any chemical conjugation was able to self-assemble into nanoparticle under physiological condition. Non-reducing SDS-PAGE results showed that trimer content of RGD-TRAIL-ELP increased 3.4-fold than RGD-TRAIL. Flow cytometry confirmed that RGD-TRAIL-ELP 3-fold enhanced apoptosis-inducing capacity than RGD-TRAIL. Single intraperitoneal injection of the RGD-TRAIL-ELP nanoparticle induced nearly complete tumor regression in the COLO-205 tumor xenograft model. Histological observation confirmed that RGD-TRAIL-ELP induced significant tumor cell apoptosis without apparent liver toxicity. These findings suggested that a great potential application of the RGD-TRAIL-ELP nanoparticle system as a safe and efficient delivery strategy for cancer therapy.
منابع مشابه
Straightforward and Cost-Effective Production of RADA-16I Peptide in Escherichia coli
Background: RADA16I represents one of promising hydrogel forming peptides. Several implementations of RADA16I hydrogels have proven successful in the field of regenerative medicine and tissue engineering. However, RADA16I peptides used in various studies utilize synthetic peptides and so far, only two research articles have been published on RADA16I peptide recombinant producti...
متن کاملEnhancement of antitumor properties of TRAIL by targeted delivery to the tumor neovasculature.
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising anticancer agent with tumor-selective apoptotic activity. TRAIL plays a role in the innate and adaptive immune response and autoimmune disease and may also be involved in hepatic cell death and inflammation. For these reasons, chronic exposure to TRAIL may have deleterious side effects in patients as a cancer therape...
متن کاملCloning, expression, purification and the study of immunotherapy status of TGFαL3-SEB chimeric protein in breast cancer treatment
Background & Aim: Bacterial superantigens, stimulate polyclonal T cells irrespective of their antigen specificity, resulting in a massive release of cytokines from T cells and monocytes, and suggest that that they could be candidates of new antitumor agents. Recent attempts have been done to specifically target superantigens towards tumors. Here, we evaluate TGFαL3-SEB fusion protein as a new a...
متن کاملGold nanoparticle-induced sonosensitization enhances the antitumor activity of ultrasound in colon tumor-bearing mice
Introduction: Light-driven cancer therapy strategies (e.g. photodynamic therapy and photothermal therapy) have undergone remarkable progress in recent years, but they still suffer from a serious drawback of limited penetration depth of light in tissue. As a non-invasive and non- ionizing radiation, ultrasound can be focused remotely, transferring acoustic energy deep in the bo...
متن کاملEnzymatically Active Microgels from Self-Assembling Protein Nanofibrils for Microflow Chemistry
Amyloid fibrils represent a generic class of protein structure associated with both pathological states and with naturally occurring functional materials. This class of protein nanostructure has recently also emerged as an excellent foundation for sophisticated functional biocompatible materials including scaffolds and carriers for biologically active molecules. Protein-based materials offer th...
متن کامل